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Fluxo de um campo vetorial

d� = ~E · d~S
d~S

d~S -  vetor área;                             é a área do elemento de superfície    |d~S| = dS

Direção do vetor          é          à superfície    d~S ?

Sentido do vetor         :  para superfícies fechadas, de dentro para fora;                   
                                             se a superfície for aberta é arbitrário.

d~S

ELECTROSTATICS: CHARGES AND FIELDS 21

grows infinite like Xjr1 as we approach the point. It makes no sense to
talk about the field at the point charge. As our ultimate physical
sources of field are not, we believe, infinite concentrations of charge in
zero volume but instead finite structures, we simply ignore the math-
ematical singularities implied by our point-charge language and rule
out of bounds the interior of our elementary sources. A continuous
charge distribution p (x\ y\ z') which is nowhere infinite gives no trou-
ble at all. Equation 15 can be used to find the field at any point within
the distribution. The integrand doesn't blow up at r = 0 because the
volume element in the numerator is in that limit proportional to r1 dr.
That is to say, so long as p remains finite, the field will remain finite
everywhere, even in the interior or on the boundary of a charge
distribution.

FLUX
1.9 The relation between the electric field and its sources can be
expressed in a remarkably simple way, one that we shall find very use-
ful. For this we need to define a quantity called flux.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.13 shows
such a surface, the field being suggested by a few field lines. Now
divide the whole surface into little patches which are so small that over
any one patch the surface is practically flat and the vector field does
not change appreciably from one part of a patch to another. In other
words, don't let the balloon be too crinkly, and don't let its surface
pass right through a singularity! of the field such as a point charge.
The area of a patch has a certain magnitude in cm2, and a patch
defines a unique direction—the outward-pointing normal to its sur-
face. (Since the surface is closed, you can tell its inside from its out-
side; there is no ambiguity.) Let this magnitude and direction be rep-
resented by a vector. Then for every patch into which the surface has
been divided, such as patch number j , we have a vector a7 giving its
area and orientation. The steps we have just taken are pictured in Fig.
1.13ft and c. Note that the vector a, does not depend at all on the shape
of the patch; it doesn't matter how we have divided up the surface, as
long as the patches are small enough.

Let Ej be the electric field vector at the location of patch number
j . The scalar product E, • a, is a number. We call this number the
flux through that bit of surface. To understand the origin of the name,

fBy a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but any place where the field changes magnitude or direc-
tion discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon's surface were to coincide with the surface of discontinuity over some finite

(b)

(c)

FIGURE 1 .13
(a) A closed surface in a vector field is divided {b) into
small elements of area, (c) Each element of area is
represented by an outward vector.

Mede a quantidade de campo (linhas de campo ) que atravessa a 
superfície S

� =

Z

S
d�

Análogo à vazão (campo de velocidades) de um !uído

Soma sobre todos os elementos de área que compõem a superfície S
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Fluxo de um campo vetorial

~v

d` = vdt

✓

x

d~S

Quantas partículas com velocidade       passam pelo elemento de área         em um 
intervalo de tempo        ?

Resposta: todas contidas no volume do prisma oblíquo de base         e aresta       .  
Apenas estas atravessam o lemento de área.               

~v d~S
dt

dS d`

Volume do !uido que escoa através de d~S

dV = dS d` cos ✓ = dS vdt cos ✓ = ~v · d~S dt

Fluxo ou vazão:  d� =
dV

dt
= ~v · d~S

Friday, February 28, 14



Fluxo de um campo vetorial

Vamos explorar um pouco esta de"nição de  !uxo:              d� = ~E · d~S

d~S

~E

d~S

~E

d~S

~E

✓
x

(a)      é tangente à superfície          ~E ? d~S ) d� = ~E · d~S = 0~E

(b)      é perpendicular à superfície          ~E ~E k d~S ) d� = E dS

(c)       forma um ângulo      com a superfície          ~E ✓ d� = ~

E · d~S = EdS cos ✓

E cos ✓

 - componente de       na direção de ~E d~S
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Fluxo de um campo vetorial

(d) Superfície fechada, campo uniforme          

~E

✓
x

d~S0

d~S1 d~S2d�0 = �EdS0

d�1 = EdS1 cos ✓

d�2 = 0
⇣
~E ? d~S2

⌘

Fluxo total:          d� = d�0 + d�1 + d�2

Note que:
dS1 cos ✓ = dS0 ) d�1 = �d�0

Portanto, d� = 0  - tudo que entra sai
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Fluxo de um campo vetorial

1. Cálculo do !uxo de campo elétrico produzido por uma carga pontual +q através de 
uma superfície esférica de raio R centrada na carga +q.          

+q R

~Ed~S

d� = ~E · d~S = EdS

� = k
q

R2
4⇡R2 =

1

4⇡✏0

q

R2
4⇡R2 ) � =

q

✏0

Soma sobre todos os elementos de área que compõem a superfície esférica

ao longo desta superfície o campo 
não varia em módulo

independente do raio da superfície esférica

� =

Z

S
d� =

Z

S
EdS = E

Z

S
dS = ES = E 4⇡R2
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Elemento de área em coordenadas esféricas

Figure 4.2.1   A spherical Gaussian surface enclosing a charge Q . 

In spherical coordinates, a small surface area element on the sphere is given by (Figure 
4.2.2) 

&
dA = r2 sin d dφ ˆθ θ  r (4.2.1) 

Figure 4.2.2 A small area element on the surface of a sphere of radius r. 

Thus, the net electric flux through the area element is 

& 
dΦ =  

&
⋅ d = E dA = 

 1 Q

(r sin d dφ ) = 

QE A  2 θ θ  sin θ d dθ φ (4.2.2)E 2
 4πε0 r  4πε0 

The total flux through the entire surface is  

Φ =  E A  = sin d dφ = (4.2.3)E �∫∫ 
& 

⋅ d 
& Q ∫

π 
θ θ ∫

2π Q 
0 04πε εS 0 0 

The same result can also be obtained by noting that a sphere of radius r has a surface area 
A = 4π r 2 , and since the magnitude of the electric field at any point on the spherical 
surface is E = Q / 4πε0r

2 , the electric flux through the surface is 

& &  1 Q  2 QΦ =  E A⋅d = E  dA E= A = 4π r = (4.2.4)E �∫∫ 
S 

�∫∫ 
S 


 4πε0 r2 

 ε0 

4-4 

dS = r2sin ✓ d✓ d�
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Fluxo de um campo vetorial

1. Cálculo do !uxo de campo elétrico produzido por uma carga pontual +q através de 
elementos de superfícies esféricas concêntricas centradas na carga +q.          

+q
R1

R2

d~S2

d~S1

~E2

~E1

) E1

E2
=

✓
R2

R1

◆2

dS1 = R2
1 sin ✓ d✓d�

dS2 = R2
2 sin ✓ d✓d�

) dS1

dS2
=

✓
R1

R2

◆2

d�1 = E1 dS1 d�2 = E2 dS2 ) d�1

d�2
=

✓
E1

E2

◆✓
dS1

dS2

◆
= 1

E1 = k
q

R2
1

E2 = k
q

R2
2

d�1 = d�2  Também independe do raio
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Fluxo de um campo vetorial

2. Vamos distorcer um pouco a segunda superfície e calcular o !uxo do campo 
elétrico gerado pela carga +q através de S

+q
R1

R2

d~S1

d~S2

~E2

~E1

S

d~S

S1

S2

d� = ~

E2 · d~S = E2 dS cos ✓

✓

dS cos ✓ = dS2

d~S

d~S2

~E2

x

✓

x

d� = E2 dS2 = d�2

Entretanto,                          , portanto,  d�2 = d�1

Isto é verdade se a carga q estiver dentro do volume delimitado por S   

� =

Z

S
d� =

Z

S1

d�1 = �1 =
q

✏0

Friday, February 28, 14



Fluxo independe da forma da superfície

In the above, we have chosen a sphere to be the Gaussian surface. However, it turns out 
that the shape of the closed surface can be arbitrarily chosen. For the surfaces shown in 
Figure 4.2.3, the same result ( Φ =  Q / ε ) is obtained. whether the choice is S , S  orE 0 1 2 

S3 . 

Figure 4.2.3   Different Gaussian surfaces with the same outward electric flux. 

The statement that the net flux through any closed surface is proportional to the net 
charge enclosed is known as Gauss’s law. Mathematically, Gauss’s law is expressed as 

encΦ =  Ò
ur 

⋅ d 
r 

= q (Gauss’s law) (4.2.5)E ∫∫ E A  
εS 0 

where qenc is the net charge inside the surface. One way to explain why Gauss’s law 
holds is due to note that the number of field lines that leave the charge is independent of 
the shape of the imaginary Gaussian surface we choose to enclose the charge. 

&
To prove Gauss’s law, we introduce the concept of the solid angle. Let ∆A1 = ∆  A1 r̂ be 
an area element on the surface of a sphere S1  of radius r1 , as shown in Figure 4.2.4. 

Figure 4.2.4 The area element ∆A  subtends a solid angle ∆Ω . 

&
The solid angle ∆Ω  subtended by ∆A1 = ∆  A1 r̂  at the center of the sphere is defined as  

∆Ω ≡ ∆A 
2

1 (4.2.6)
r1 

4-5 

�S1 = �S2 = �S3
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Fluxo de um campo vetorial

3. Vamos supor que a carga +q esteja fora do volume delimitado pela superfície S

+q

d~S1

d~S2

~E2

~E1

S

d~S

d~S
(a)

(b)

d�

(a) = ~

E2 · d~S = E2 dS cos ✓ = E2dS2 = d�

(a)
2

d�

(b) = ~

E1 · d~S = E1 dS cos ✓ = �E1dS1 = �d�

(b)
1

Entretanto, já mostramos que d�(a)
2 = d�(b)

1

Portanto, o !uxo de campo elétrico através de S, neste caso, é nulo

� =

Z

S
d� = 0

Isto é verdade se a carga q estiver fora do volume delimitado por S   
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Lei de Gauss

� =

Z

S

~E · d~S =
q

✏0

O !uxo de campo elétrico através de uma superfície fechada S é igual a           ,

 onde  q é a carga no interior do volume delimitado por S

q

✏0

A Lei de Gauss pode ser bastante útil para calcular o campo elétrico de distribuições 
que apresentam uma simetria óbvia
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Aplicações da Lei de Gauss
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Aplicação da Lei de Gauss

2/26/14 electrostatics - Why is the flux 0? I don't understand this concept - Physics Stack Exchange

physics.stackexchange.com/questions/24513/why-is-the-flux-0-i-dont-understand-this-concept 1/1

 
sign up log in tour help 

  Take  the  2-­minute  tour ×Physics  Stack  Exchange  is  a  question  and  answer  site  for  active  researchers,  academics  and  students  of  physics.
It's  100%  free,  no  registration  required.

Why
 is
 the
 flux
 0?
 I
 don't
 understand
 this
 concept

!

Why does it say that the flux due to q_2 and q_3 through S is 0? Doesn't it contain a nonzero

charge q_1?

Does anyone also know the difference between "no charge" vs "net charge is 0"? My book

differentiates it.

 electrostatics gauss-law

asked Apr 28 '12 at 0:19

sidht

381 2 13

1 Answer

The surface  does indeed contain charge , and so will have nonvanishing electric flux.

However,  does not contain charges  and , so it will have zero total flux 

.

due
 to
 those
charges

answered Apr 28 '12 at 0:38

tmac

1,222 3 11

  –   Thank you very much for the clarification. sidht Apr 30 '12 at 0:11

Answer This Question

�S =
q1
✏0

�S0 =
q2 + q3

✏0

�S00 = 0

O campo elétrico sobre  S’’ é nulo? 

Se q2 = -q3 o fluxo através de S’ seria nulo? O campo elétrico sobre  S’ seria nulo? 

O campo elétrico sobre S é o campo devido apenas a carga q1?

 Considere o sistema constituído pelas três cargas q1, q2 e q3

Friday, February 28, 14



Campo no interior de um condutor em equilíbrio 
eletrostático

O campo elétrico no interior de um condutor ideal em equilíbrio eletrostático é nulo. 

& 
electric field E′ due to the induced charge distribution corresponds to a dipole field, and

)& )& &
the total electric field is simply = 0 E′.E E  +  The field lines are depicted in Figure 4.3.1.     

)& 
Figure 4.3.1 Placing a conductor in a uniform electric field E0 . 

(2) Any net charge must reside on the surface.  

)&
If there were a net charge inside the conductor, then by Gauss’s law (Eq. 4.3.2), E would 
no longer be zero there. Therefore, all the net excess charge must flow to the surface of 
the conductor. 

Figure 4.3.2 Gaussian surface inside a conductor. The enclosed charge is zero. 

& 
(3) The tangential component of E is zero on the surface of a conductor. 

We have already seen that for an isolated conductor, the electric field is zero in its 
interior. Any excess charge placed on the conductor must then distribute itself on the 
surface, as implied by Gauss’s law. 

Consider the line integral Ñ
r 

⋅ d 
r

∫ E s  around a closed path shown in Figure 4.3.3: 

Figure 4.3.3 Normal and tangential components of electric field outside the conductor 

4-16 

         - Campo resultante~E          - Campo de polarização ~E0         - Campo externo ~E0

O excesso de carga em um condutor carregado flui para a superfície externa do condutor. 

& 
electric field E′ due to the induced charge distribution corresponds to a dipole field, and

)& )& &
the total electric field is simply = 0 E′.E E  +  The field lines are depicted in Figure 4.3.1.     

)& 
Figure 4.3.1 Placing a conductor in a uniform electric field E0 . 

(2) Any net charge must reside on the surface.  

)&
If there were a net charge inside the conductor, then by Gauss’s law (Eq. 4.3.2), E would 
no longer be zero there. Therefore, all the net excess charge must flow to the surface of 
the conductor. 

Figure 4.3.2 Gaussian surface inside a conductor. The enclosed charge is zero. 

& 
(3) The tangential component of E is zero on the surface of a conductor. 

We have already seen that for an isolated conductor, the electric field is zero in its 
interior. Any excess charge placed on the conductor must then distribute itself on the 
surface, as implied by Gauss’s law. 

Consider the line integral Ñ
r 

⋅ d 
r

∫ E s  around a closed path shown in Figure 4.3.3: 

Figure 4.3.3 Normal and tangential components of electric field outside the conductor 
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superfície Gaussiana
� = 0

+
+

+
+

++ + +

+
+

+

+
+

� =
q

✏0
= 0 ) q = 0
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Campo gerado por um fio infinito uniformemente 
carregado

O problema apresenta simetria cilíndrica: o campo 
é radial e tem a mesma intensidade em pontos 
equidistantes ao eixo do "o.          

(4) Calculate the electric flux ΦE  through the Gaussian surface for each region. 

(5) Equate ΦE  with qenc / ε0 , and deduce the magnitude of the electric field. 

Example 4.1: Infinitely Long Rod of Uniform Charge Density 

An infinitely long rod of negligible radius has a uniform charge density λ . Calculate the 
electric field at a distance r  from the wire.   

Solution: 

We shall solve the problem by following the steps outlined above.   

(1) An infinitely long rod possesses cylindrical symmetry.   

(2) The charge density is uniformly distributed throughout the length, and the electric 
& 

field E must be point radially away from the symmetry axis of the rod (Figure 4.2.6). 
The magnitude of the electric field is constant on cylindrical surfaces of radius r . 
Therefore, we choose a coaxial cylinder as our Gaussian surface.   

Figure 4.2.6 Field lines for an infinite uniformly charged rod (the symmetry axis of the 
rod and the Gaussian cylinder are perpendicular to plane of the page.) 

(3) The amount of charge enclosed by the Gaussian surface, a cylinder of radius r  and 
length "  (Figure 4.2.7), is qenc = λ" . 

Figure 4.2.7 Gaussian surface for a uniformly charged rod.  

4-8 

(4) Calculate the electric flux ΦE  through the Gaussian surface for each region. 

(5) Equate ΦE  with qenc / ε0 , and deduce the magnitude of the electric field. 

Example 4.1: Infinitely Long Rod of Uniform Charge Density 

An infinitely long rod of negligible radius has a uniform charge density λ . Calculate the 
electric field at a distance r  from the wire.   

Solution: 

We shall solve the problem by following the steps outlined above.   

(1) An infinitely long rod possesses cylindrical symmetry.   

(2) The charge density is uniformly distributed throughout the length, and the electric 
& 

field E must be point radially away from the symmetry axis of the rod (Figure 4.2.6). 
The magnitude of the electric field is constant on cylindrical surfaces of radius r . 
Therefore, we choose a coaxial cylinder as our Gaussian surface.   

Figure 4.2.6 Field lines for an infinite uniformly charged rod (the symmetry axis of the 
rod and the Gaussian cylinder are perpendicular to plane of the page.) 

(3) The amount of charge enclosed by the Gaussian surface, a cylinder of radius r  and 
length "  (Figure 4.2.7), is qenc = λ" . 

Figure 4.2.7 Gaussian surface for a uniformly charged rod.  
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Fio visto de frente    

Escolhemos uma superfície Gaussiana (fechada) cilindrica, de raio r e comprimento l, 
com eixo coincidente com o "o.         

S1 e S2 são as tampas e S3 é a superfície lateral

� = �S1 + �S2 + �S3
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